sábado, 21 de noviembre de 2015

CAPÍTULO XII

ACERO




1. INTRODUCCIÓN

Según la norma UNE EN 10020:2001 define al acero como aquel material en el que el hierro es el elemento predominante, el contenido en carbono es, generalmente inferior al 2% y contiene además a otros elementos.

El límite superior del 2% en el contenido de carbono (C) es el límite que separa al acero de la fundición. En general, un aumento del contenido de carbono en el acero eleva su resistencia a la tracción, pero como contrapartida incrementa su fragilidad en frío y hace que disminuya la tenacidad y la ductilidad. En función de este porcentaje, los aceros se pueden clasificar de la siguiente manera:

ACEROS DULCE

Cuando el porcentaje de carbono es del 0,25% máximo. Estos aceros tienen una resistencia última de rotura en el rango de 48-55 kg/mm2 y una dureza Brinell en el entorno de 135-160 HB. Son aceros que presentan una buena soldabilidad aplicando la técnica adecuada.
  • Aplicaciones: Piezas de resistencia media de buena tenacidad, deformación en frío, embutición, plegado, herrajes, etc.

ACEROS SEMIDULCE

El porcentaje de carbono está en el entorno del 0,35%. Tiene una resistencia última a la rotura de 55-62 kg/mm2 y una dureza Brinell de 150-170 HB. Estos aceros bajo un tratamiento térmico por templado pueden alcanzar una resistencia mecánica de hasta 80 kg/mm2 y una dureza de 215-245 HB.
  • Aplicaciones: Ejes, elementos de maquinaria, piezas resistentes y tenaces, pernos, tornillos, herrajes.

ACEROS SEMIDURO

Si el porcentaje de carbono es del 0,45%. Tienen una resistencia a la rotura de 62-70 kg/mm2 y una dureza de 280 HB. Después de someterlos a un tratamiento de templado su resistencia mecánica puede aumentar hasta alcanzar los 90 kg/mm2.
  • Aplicaciones: Ejes y elementos de máquinas, piezas bastante resistentes, cilindros de motores de explosión, transmisiones, etc.

ACEROS DURO

El porcentaje de carbono es del 0,55%. Tienen una resistencia mecánica de 70-75 kg/mm2, y una dureza Brinell de 200-220 HB. Bajo un tratamiento de templado estos aceros pueden alcanzar un valor de resistencia de 100 kg/mm2 y una dureza de 275-300 HB.
  • Aplicaciones: Ejes, transmisiones, tensores y piezas regularmente cargadas y de espesores no muy elevados.




El diagrama tensión-deformación resulta de la representación gráfica del ensayo de tracción, normalizado en UNE-EN 10002-1, y que consiste en someter a una probeta de acero normalizada a un esfuerzo creciente de tracción según su eje hasta la rotura de la misma. El ensayo de tracción permite el cálculo de diversas propiedades mecánicas del acero.
La probeta de acero empleada en el ensayo consiste en una pieza cilíndrica cuyas dimensiones guardan la siguiente relación de proporcionalidad:
L0= 5,65 · √S0


Donde L0 es la longitud inicial, S0 es la sección inicial y D0 es el diámetro inicial de la probeta. Para llevar a cabo el ensayo de tracción, las anteriores variables pueden tomar los siguientes valores:
D0 = 20 mm, L0 = 100 mm, ó bien,
D0 = 10 mm, L0 = 50 mm.


El ensayo comienza aplicando gradualmente la fuerza de tracción a la probeta, lo cual provoca que el recorrido inicial en la gráfica discurra por la línea recta que une el origen de coordenadas con el punto A.

Hasta llegar al punto A se conserva una proporcionalidad entre la tensión alcanzada y el alargamiento unitario producido en la pieza. Es lo que se conoce como Ley de Hooke, que relaciona linealmente tensiones con las deformaciones a través del módulo de elasticidad E, constante para cada material que en el caso de los aceros y fundiciones vale aproximadamente 2.100.000 Kg/cm2.


La determinación de las propiedades mecánicas en el acero, como el límite elástico (fy), la resistencia a tracción (fu), así como de otras características mecánicas del acero como el Módulo de Elasticidad (E), o el alargamiento máximo que se produce en la rotura, se efectuará mediante el anteriormente definido ensayo de tracción normalizado en la UNE-EN 10002-1.

El valor de la tensión última o resistencia a la tracción se calcula a partir de este ensayo, y se define como el cociente entre la carga máxima que ha provocado el fallo a rotura del material por tracción y la superficie de la sección transversal inicial de la probeta, mientras que el límite elástico marca el umbral que, una vez se ha superado, el material trabaja bajo un comportamiento plástico y deformaciones remanente.



El coeficiente de Poisson corresponde a la razón entre la elongación longitudinal y a la deformación transversal en el ensayo de tracción. Alternativamente el coeficiente de Poisson puede calcularse a partir de los módulos de elasticidad longitudinal y transversal, según la expresión siguiente:
ν =   
E
  -  


1
2  ·  G


Para el acero, toma el siguiente valor:
ν = 0,3
Como en el caso anterior, las expresiones arriba indicadas del coeficiente de Poisson, ν, son valores constantes siempre dentro del rango de comportamiento elástico del acero.


La tenacidad a la fractura del acero define su capacidad a soportar cualquier solicitación exterior sin que se origine ningún tipo de fractura en el interior del material. Este es un concepto aparte de la tensión de rotura del material, y ello es así porque, en ocasiones, la fractura se puede producir con la aplicación de esfuerzos menores que los que marquen la tensión de rotura del material, o incluso menores que su límite elástico. Y ello es debido porque interiormente el material puede contener pequeñas grietas o defectos que son el germen del inicio de la fractura.

En efecto, supongamos una pieza sección A0 sometida a un esfuerzo F. El valor de la tensión normal media en cualquier sección perpendicular al esfuerzo sería σ = F/A0. Pues bien, si la pieza presenta una pequeña grieta o defecto, como puedan ser inclusiones de elementos extraños, ocurre entonces que alrededor de esta discontinuidad se produce un efecto amplifcador, un aumento del nivel de tensiones normal a que estaría sometida la pieza.
Para calibrar cuánto se amplifica los niveles de tensiones alrededor de una grieta o discontinuidad se define el Factor de Intensidad de Tensiones, K, mediante la siguiente expresión general:

K = f  ·  σ  ·  √ ( π  ·  a )
donde:
f = coeficiente adimensional o factor geométrico, que depende de la fuerza aplicada y la geometría de la pieza;
σ = es el valor de la tensión normal aplicada;
a = es el tamaño del defecto. Si el defecto es superficial representa la longitud total de la grieta, mientras que si la grieta es interior, representa la mitad de su longitud.





No hay comentarios. :

Publicar un comentario